

Early Level 1b evaluation based on HIRS experience and AIRS Data Product Validation

Larry McMillin
Climate Research and Applications Division
National Environmental Satellite, Data, and
Information Service
Washington, D.C.

Larry.McMillin@noaa.gov

AIRS Early Validation for AIRS

- Early tests
 - Extremes test
 - Tuning test
 - Mirror coating test
 - Covariance test Eigenvector test
 - Scan bias test
 - Noise test
 - Sun Glint test
 - Spectral stability test

AIRS Early Evaluations

Extremes test

- Purpose Look for drifts in the data with time
- Average the warmest 2% of observations and track with time
- Average the coldest 2% of observations and track with time

Tuning test

- Purpose Get an early look at tuning performance
- Perform early tuning based on differences from NCEP model
- Track with time stability
- Compare with RAOB values when a sample is available
- Compare tunings based on NCEP and ECMWF values

AIRS Early Evaluations Continued

Mirror Coating Test

- Purpose Look for angle dependent problems caused by coatings
 - Scan mirror coatings polarizes the signal and rotates relative to the instrument
- Cold clouds can reveal a scan bias caused by a mirror coating
- All but the most opaque channels see the same temperature
- Select areas with low temperatures, 210 (ie. High clouds)
- Calculate the expected value by averaging unaffected channels
 - Coldest values are the least affected mirror is warmer
- Plot the channel difference from the average of unaffected channels
- Look at deviations as a function of scan position
- Calculate eigenvectors of the differences
- If patterns exist
 - Use the measured mirror temperature to calculate emissivities

AIRS Early Evaluations Continued

Covariance Test

- Purpose look for systematic differences between calculated & observed
- The Covariances of measured and calculated radiances should agree
- Select clear areas and calculate the covariance of the measured radiances
- Using the forecast values, calculate radiances and then the covariance
- Difference the covariances and display the result
- If differences occur, investigate the cause

• Eigenvector Test – Equivalent

- Calculate eigenvectors from clear data
- Use to dominant ones to calculate PCS's from measured data
- Multiply by the eigenvectors to reconstruct the measurements
- Difference the measured and reconstructed values
- Map the differences for channels with large departures

AIRS Early Evaluations Continued

Scan Bias Test

- Purpose look for scan dependent biases
- Select clear observations
- Calculate radiances from the forecast/analysis using bias adjustment
- Calculate radiances from the forecast/analysis without the bias adjustment
- Difference the measured and clear values
- Map the differences for each scan angle
- Average over latitude bands and the globe for each scan angle
- Compare the results

Noise Test

- Purpose Establish the noise level in orbit
- Compare adjacent clear spots to get the noise
- Subtract along track values and cross track values separately
- Calculate the mean and rms to get noise values
 - Note along track mean should be zero

HIRS Histogram of the 1st principal component score as a function of scan position (dim: 3) and scaled value (dim: 2). Note double peak and dependence on scan position

HIRS Histograms of the clear spot discriminator as a function of scan position (dim: 3) and scaled value (dim: 2). Slight dependence on scan position.

HIRS Scan dependent biases – purple is clear discriminate – light blue is latitude – others are 1st 3 PCS's – x axis is scan position – vertical is scaled value of the mode

HIRS: Systematic Noise Chan. 16 Difference from microwave predicted value. Dim: 2 is scan position, dim: 3 is scan line.

Early evaluations Continued

Sun Glint Test

- Purpose Establish the angles & channels affected by reflected solar radiation
- Use clear data at night (SZA>96) to create coefficients to predict shortwave channels from longwave channels
- Apply the coefficients to nighttime data over oceans to establish the error level
- Apply the coefficients to daytime data over oceans to get solar effects
- Plot a typical orbit to get the expected value

• Step 2

- Get the forecast wind speed
- Plot the difference as a function of wind speed
- Do the same for land except for the wind speed

Early evaluations Continued

Spectral stability Test

- Purpose detect shifts in frequency
- Select pairs of channels that are on opposite sides of a spectral line and have about the same radiance – one pair for each module
- Calculate the expected temperature difference over a tropical atmosphere
- Use clear data (not necessary for high peaking channels) to calculate the difference
- Compare the expected and measured values
- Plot the difference as a function of time
- Alternative
 - Calculate principal component scores for measured and calculated values
 - Look at the differences

AIRS Validation Plans

- A trial version is set up on a website
- Orbit-net.nesdis.noaa.gov/crad/ipo
- Capabilities
 - View matches with AIRS and HIRS
 - View ACARS reports
 - View monthly statistics TOVS up through NOAA 14
 - View data as a function of time, angle etc.
 - View the HDF format specification

Correlative Data for Validation

Current

- Radiosondes
- Buoys
- Aircraft
- Hourly surface observations
- Other satellites
- Forecasts/analysis

Planned

- GPS moisture
- Ozone
- Upper atmospheric temperatures
- ARM data

Data - continued

Moisture

- Current upper atmospheric measurements should be more accurate than radiosondes even though the same sensor is used due to compression/heating
- Current aircraft moisture may be difficult
 - Data are available
 - Uses the Viasalla sensor
 - Ages with time and need calibration
 - Adjusted data available from NCAR, but online data has issues
- Starting to deploy an advanced sensor
 - Better upper atmospheric measurements
 - Uses a small absorption cell

Aircraft Reports

- The next slide shows the aircraft repots at 1200 Z (ACARS)
 - Some water vapor measurements appearing
- Following slide shows the European reports at 1200 Z (ASDAR)

Radiosonde files

- Radiosonde data
- Hourly surface temperatures
- SST if available
- AIRS data
- AIRS retrievals
 - Bias adjusted
 - Unadjusted
- Aircraft reports

Current Tasks

TEAM exercise

- Supplement radiosonde information to complete a profile
 - This means adding the unknown data not data from other truth
- Put the team match files in our data base
 - We are doing a match but want the official team version
- HIRS prototype for tuning algorithm
 - Status running
 - Complete by Dec 2001
- Comparison of radiosonde with ACARS reports
 - Data are being collected and results are available
 - Aircraft use a Viasalla sensor
 - Results show a level dependent bias
 - Radiosondes start warm but cool with height

Current Tasks Continued

- Use of GPS data
 - Place data in match files with closely collocated radiosondes
 - Format is set but no data yet
 - Like to get more than 10 (15) US matches
 - Compare total water vapor and
 - Adjust the radiosonde or
 - Reject it
- Working with Jim Yoe
- We will place other data in our match file
 - The sooner we can details about a format, the better
 - Might be useful to look at our format on our web site